Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 289
Filtrar
1.
Microbiol Spectr ; 10(1): e0159021, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35107329

RESUMO

Dickeya zeae is a worldwide destructive pathogen that causes soft rot diseases on various hosts such as rice, maize, banana, and potato. The strain JZL7 we recently isolated from clivia represents the first monocot-specific D. zeae and also has reduced pathogenicity compared to that of other D. zeae strains (e.g., EC1 and MS2). To elucidate the molecular mechanisms underlying its more restricted host range and weakened pathogenicity, we sequenced the complete genome of JZL7 and performed comparative genomic and functional analyses of JZL7 and other D. zeae strains. We found that, while having the largest genome among D. zeae strains, JZL7 lost almost the entire type III secretion system (T3SS), which is a key component of the virulence suite of many bacterial pathogens. Importantly, the deletion of T3SS in MS2 substantially diminished the expression of most type III secreted effectors (T3SEs) and MS2's pathogenicity on both dicots and monocots. Moreover, although JZL7 and MS2 share almost the same repertoire of cell wall-degrading enzymes (CWDEs), we found broad reduction in the production of CWDEs and expression levels of CWDE genes in JZL7. The lower expression of CWDEs, pectin lyases in particular, would probably make it difficult for JZL7 to break down the cell wall of dicots, which is rich in pectin. Together, our results suggest that the loss of T3SS and reduced CWDE activity together might have contributed to the host specificity and virulence of JZL7. Our findings also shed light on the pathogenic mechanism of Dickeya and other soft rot Pectobacteriaceae species in general. IMPORTANCE Dickeya zeae is an important, aggressive bacterial phytopathogen that can cause severe diseases in many crops and ornamental plants, thus leading to substantial economic losses. Strains from different sources showed significant diversity in their natural hosts, suggesting complicated evolution history and pathogenic mechanisms. However, molecular mechanisms that cause the differences in the host range of D. zeae strains remain poorly understood. This study carried out genomic and functional dissections of JZL7, a D. zeae strain with restricted host range, and revealed type III secretion system (T3SS) and cell wall-degrading enzymes (CWDEs) as two major factors contributing to the host range and virulence of D. zeae, which will provide a valuable reference for the exploration of pathogenic mechanisms in other bacteria and present new insights for the control of bacterial soft rot diseases on crops.


Assuntos
Proteínas de Bactérias/metabolismo , Parede Celular/microbiologia , Produtos Agrícolas/microbiologia , Dickeya/genética , Dickeya/patogenicidade , Especificidade de Hospedeiro , Sistemas de Secreção Tipo III/metabolismo , Proteínas de Bactérias/genética , Parede Celular/metabolismo , Produtos Agrícolas/metabolismo , Dickeya/enzimologia , Dickeya/fisiologia , Genoma Bacteriano , Filogenia , Doenças das Plantas/microbiologia , Sistemas de Secreção Tipo III/genética , Virulência
2.
Gene ; 809: 146049, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34743920

RESUMO

Brown spot disease (BSD) of rice (Oryza sativa L.) caused by Bipolaris oryzae is one of the major and neglected fungal diseases worldwide affecting rice production. Despite its significance, very limited knowledge on genetics and genomics of rice in response to B. oryzae available. Our study firstly identified moderately resistant (Gitesh) and susceptible (Shahsarang) North-East Indian rice cultivars in response to a native Bipolaris oryzae isolate BO1. Secondly, a systematic comparative RNA seq was performed for both cultivars at four different time points viz. 12, 24, 48, and 72 hours post infestation (hpi). Differential gene expression analysis revealed the importance of early response to the pathogen in suppressing disease progression. The pathogen negatively regulates the expression of photosynthetic-related genes at early stages in both cultivars. Of the cell wall modification enzymes, cellulose synthase and callose synthase are important for signal transduction and defense. Cell wall receptors OsLYP6, OsWAK80 might positively and OsWAK25 negatively regulate disease resistance. Jasmonic acid and/or abscisic acid signaling pathways are presumably involved in disease resistance, whereas salicylic acid pathway, and an ethylene response gene OsEBP-89 in promoting disease. Surprisingly, pathogenesis-related proteins showed no antimicrobial impact on the pathogen. Additionally, transcription factors OsWRKY62 and OsWRKY45 together might negatively regulate resistance to the pathogen. Taken together, our study has identified and provide key regulatory genes involved in response to B. oryzae which serve as potential resources for functional genetic analysis to develop genetic tolerance to BSD of rice.


Assuntos
Bipolaris/patogenicidade , Oryza/genética , Oryza/microbiologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Ácido Abscísico/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Parede Celular/microbiologia , Ciclopentanos/metabolismo , Resistência à Doença/genética , Etilenos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/genética , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética
3.
PLoS Genet ; 17(12): e1009586, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34941903

RESUMO

The cell envelope is essential for viability in all domains of life. It retains enzymes and substrates within a confined space while providing a protective barrier to the external environment. Destabilising the envelope of bacterial pathogens is a common strategy employed by antimicrobial treatment. However, even in one of the best studied organisms, Escherichia coli, there remain gaps in our understanding of how the synthesis of the successive layers of the cell envelope are coordinated during growth and cell division. Here, we used a whole-genome phenotypic screen to identify mutants with a defective cell envelope. We report that loss of yhcB, a conserved gene of unknown function, results in loss of envelope stability, increased cell permeability and dysregulated control of cell size. Using whole genome transposon mutagenesis strategies, we report the comprehensive genetic interaction network of yhcB, revealing all genes with a synthetic negative and a synthetic positive relationship. These genes include those previously reported to have a role in cell envelope biogenesis. Surprisingly, we identified genes previously annotated as essential that became non-essential in a ΔyhcB background. Subsequent analyses suggest that YhcB functions at the junction of several envelope biosynthetic pathways coordinating the spatiotemporal growth of the cell, highlighting YhcB as an as yet unexplored antimicrobial target.


Assuntos
Parede Celular/genética , Proteínas de Escherichia coli/genética , Lipopolissacarídeos/genética , Oxirredutases/genética , Peptidoglicano/genética , Divisão Celular/genética , Membrana Celular/genética , Membrana Celular/microbiologia , Parede Celular/microbiologia , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Lipopolissacarídeos/biossíntese , Mutagênese , Fosfolipídeos/biossíntese , Fosfolipídeos/genética
4.
Molecules ; 26(23)2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34885803

RESUMO

Fungal pathogens have evolved combinations of plant cell-wall-degrading enzymes (PCWDEs) to deconstruct host plant cell walls (PCWs). An understanding of this process is hoped to create a basis for improving plant biomass conversion efficiency into sustainable biofuels and bioproducts. Here, an approach integrating enzyme activity assay, biomass pretreatment, field emission scanning electron microscopy (FESEM), and genomic analysis of PCWDEs were applied to examine digestibility or degradability of selected woody and herbaceous biomass by pathogenic fungi. Preferred hydrolysis of apple tree branch, rapeseed straw, or wheat straw were observed by the apple-tree-specific pathogen Valsa mali, the rapeseed pathogen Sclerotinia sclerotiorum, and the wheat pathogen Rhizoctonia cerealis, respectively. Delignification by peracetic acid (PAA) pretreatment increased PCW digestibility, and the increase was generally more profound with non-host than host PCW substrates. Hemicellulase pretreatment slightly reduced or had no effect on hemicellulose content in the PCW substrates tested; however, the pretreatment significantly changed hydrolytic preferences of the selected pathogens, indicating a role of hemicellulose branching in PCW digestibility. Cellulose organization appears to also impact digestibility of host PCWs, as reflected by differences in cellulose microfibril organization in woody and herbaceous PCWs and variation in cellulose-binding domain organization in cellulases of pathogenic fungi, which is known to influence enzyme access to cellulose. Taken together, this study highlighted the importance of chemical structure of both hemicelluloses and cellulose in host PCW digestibility by fungal pathogens.


Assuntos
Celulases/metabolismo , Celulose/metabolismo , Proteínas Fúngicas/metabolismo , Fungos/fisiologia , Doenças das Plantas/microbiologia , Brassica napus/microbiologia , Brassica napus/fisiologia , Parede Celular/metabolismo , Parede Celular/microbiologia , Fungos/enzimologia , Interações Hospedeiro-Patógeno , Hidrólise , Malus/microbiologia , Malus/fisiologia , Polissacarídeos/metabolismo , Triticum/microbiologia , Triticum/fisiologia , Madeira/microbiologia , Madeira/fisiologia
5.
mSphere ; 6(5): e0070721, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34585966

RESUMO

Epsins play a pivotal role in the formation of endocytic vesicles and potentially provide a linkage between endocytic and other trafficking pathways. We identified a Candida albicans epsin, ENT2, that bears homology to the Saccharomyces cerevisiae early endocytosis genes ENT1 and ENT2 and studied its functions by a reverse genetic approach utilizing CRISPR-Cas9-mediated gene deletion. The C. albicans ent2Δ/Δ null mutant displayed cell wall defects and altered antifungal drug sensitivity. To define the role of C. albicans ENT2 in endocytosis, we performed assays with the lipophilic dye FM4-64 that revealed greatly reduced uptake in the ent2Δ/Δ mutant. Next, we showed that the C. albicans ent2Δ/Δ mutant was unable to form hyphae and biofilms. Assays for virulence properties in an in vitro keratinocyte infection model demonstrated reduced damage of mammalian adhesion zippers and host cell death from the ent2Δ/Δ mutant. We conclude that C. albicans ENT2 has a role in efficient endocytosis, a process that is required for maintaining cell wall integrity, hyphal formation, and virulence-defining traits. IMPORTANCE The opportunistic fungal pathogen Candida albicans is an important cause of invasive infections in hospitalized patients and a source of considerable morbidity and mortality. Despite its clinical importance, we still need to improve our ability to diagnose and treat this common pathogen. In order to support these advancements, a greater understanding of the biology of C. albicans is needed. In these studies, we are focused on the fundamental biological process of endocytosis, of which little is directly known in C. albicans. In addition to studying the function of a key gene in this process, we are examining the role of endocytosis in the virulence-related processes of filamentation, biofilm formation, and tissue invasion. These studies will provide greater insight into the role of endocytosis in causing invasive fungal infections.


Assuntos
Biofilmes/crescimento & desenvolvimento , Candida albicans/fisiologia , Parede Celular/microbiologia , Proteínas Fúngicas/fisiologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Antifúngicos/farmacologia , Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Candida albicans/patogenicidade , Candidíase/microbiologia , Parede Celular/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Hifas/citologia , Hifas/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Virulência
6.
Int J Mol Sci ; 22(17)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34502268

RESUMO

Phytopathogenic fungi need to secrete different hydrolytic enzymes to break down complex polysaccharides in the plant cell wall in order to enter the host and develop the disease. Fungi produce various types of cell wall degrading enzymes (CWDEs) during infection. Most of the characterized CWDEs belong to glycoside hydrolases (GHs). These enzymes hydrolyze glycosidic bonds and have been identified in many fungal species sequenced to date. Many studies have shown that CWDEs belong to several GH families and play significant roles in the invasion and pathogenicity of fungi and oomycetes during infection on the plant host, but their mode of function in virulence is not yet fully understood. Moreover, some of the CWDEs that belong to different GH families act as pathogen-associated molecular patterns (PAMPs), which trigger plant immune responses. In this review, we summarize the most important GHs that have been described in eukaryotic phytopathogens and are involved in the establishment of a successful infection.


Assuntos
Fungos/enzimologia , Fungos/patogenicidade , Glicosídeo Hidrolases/fisiologia , Oomicetos/enzimologia , Oomicetos/patogenicidade , Doenças das Plantas/microbiologia , Parede Celular/química , Parede Celular/metabolismo , Parede Celular/microbiologia , Células Vegetais/microbiologia , Virulência
7.
PLoS Pathog ; 17(5): e1009546, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33984073

RESUMO

The bacterial pathogen responsible for causing Lyme disease, Borrelia burgdorferi, is an atypical Gram-negative spirochete that is transmitted to humans via the bite of an infected Ixodes tick. In diderms, peptidoglycan (PG) is sandwiched between the inner and outer membrane of the cell envelope. In many other Gram-negative bacteria, PG is bound by protein(s), which provide both structural integrity and continuity between envelope layers. Here, we present evidence of a peptidoglycan-associated protein (PAP) in B. burgdorferi. Using an unbiased proteomics approach, we identified Neutrophil Attracting Protein A (NapA) as a PAP. Interestingly, NapA is a Dps homologue, which typically functions to bind and protect cellular DNA from damage during times of stress. While B. burgdorferi NapA is known to be involved in the oxidative stress response, it lacks the critical residues necessary for DNA binding. Biochemical and cellular studies demonstrate that NapA is localized to the B. burgdorferi periplasm and is indeed a PAP. Cryo-electron microscopy indicates that mutant bacteria, unable to produce NapA, have structural abnormalities. Defects in cell-wall integrity impact growth rate and cause the napA mutant to be more susceptible to osmotic and PG-specific stresses. NapA-linked PG is secreted in outer membrane vesicles and augments IL-17 production, relative to PG alone. Using microfluidics, we demonstrate that NapA acts as a molecular beacon-exacerbating the pathogenic properties of B. burgdorferi PG. These studies further our understanding of the B. burgdorferi cell envelope, provide critical information that underlies its pathogenesis, and highlight how a highly conserved bacterial protein can evolve mechanistically, while maintaining biological function.


Assuntos
Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/fisiologia , Parede Celular/química , Quimiocinas CXC/metabolismo , Doença de Lyme/patologia , Peptidoglicano/metabolismo , Proteínas de Bactérias/genética , Parede Celular/microbiologia , Quimiocinas CXC/genética , Humanos , Doença de Lyme/metabolismo , Doença de Lyme/microbiologia
8.
Int J Mol Sci ; 22(7)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805429

RESUMO

Bois noir is the most widespread phytoplasma grapevine disease in Europe. It is associated with 'Candidatus Phytoplasma solani', but molecular interactions between the causal pathogen and its host plant are not well understood. In this work, we combined the analysis of high-throughput RNA-Seq and sRNA-Seq data with interaction network analysis for finding new cross-talks among pathways involved in infection of grapevine cv. Zweigelt with 'Ca. P. solani' in early and late growing seasons. While the early growing season was very dynamic at the transcriptional level in asymptomatic grapevines, the regulation at the level of small RNAs was more pronounced later in the season when symptoms developed in infected grapevines. Most differentially expressed small RNAs were associated with biotic stress. Our study also exposes the less-studied role of hormones in disease development and shows that hormonal balance was already perturbed before symptoms development in infected grapevines. Analysis at the level of communities of genes and mRNA-microRNA interaction networks revealed several new genes (e.g., expansins and cryptdin) that have not been associated with phytoplasma pathogenicity previously. These novel actors may present a new reference framework for research and diagnostics of phytoplasma diseases of grapevine.


Assuntos
Interações Hospedeiro-Patógeno/genética , Phytoplasma/patogenicidade , RNA Mensageiro/genética , Vitis/genética , Vitis/microbiologia , Parede Celular/genética , Parede Celular/microbiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , MicroRNAs , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , RNA de Plantas , Análise de Sequência de RNA , Estresse Fisiológico/genética , Vitis/crescimento & desenvolvimento
9.
Transgenic Res ; 30(3): 303-315, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33909228

RESUMO

Over the recent years, Nicotiana benthamiana has gained great importance as a chassis for the production of high value, low volume pharmaceuticals and/or active pharmaceutical ingredients (APIs). The process involving infiltration of the N. benthamiana leaves with Agrobacterium spp, harbouring vectors with the gene of interest, facilitates transient expression. To date, little information is available on the effect of the agro-infiltration process on the metabolome of N. benthamiana, which is necessary to improve the process for large-scale, renewable manufacturing of high value compounds and medical products. Hence, the objective of the present study was to assess metabolic adaptation of N. benthamiana as a response to the presence of Agrobacterium. The present study elucidated changes of the steady-state metabolism in the agroinfiltrated leaf area, the area around the infection and the rest of the plant. Furthermore, the study discusses the phenotypic advantages of the N. benthamiana lab strain, optimised for agro-infiltration, compared to three other wild accessions. Results showed that the lab strain has a different metabolic composition and showed less alterations of the phenylpropanoid pathway and cell wall remodelling in the agroinfiltrated leaf areas, for example chlorogenic acid, cadaverine and C18:0-2-glycerol ester. In conclusion, both of these alterations present potential candidates to improve the phenotype of the N. benthamiana lab strain for a more efficient transient expression process.


Assuntos
Agrobacterium/genética , Plantas Geneticamente Modificadas/metabolismo , Agrobacterium/crescimento & desenvolvimento , Parede Celular/genética , Parede Celular/metabolismo , Parede Celular/microbiologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/microbiologia , /crescimento & desenvolvimento , /microbiologia
10.
Plant Cell Physiol ; 62(4): 641-649, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-33543762

RESUMO

Pectin, a component of the plant cell wall, is involved in cell adhesion and environmental adaptations. We generated OsPG-FOX rice lines with little pectin due to overexpression of the gene encoding a pectin-degrading enzyme [polygalacturonase (PG)]. Overexpression of OsPG2 in rice under weak light conditions increased the activity of PG, which increased the degradation of pectin in the cell wall, thereby reducing adhesion. Under weak light conditions, the overexpression of OsPG decreased the pectin content and cell adhesion, resulting in abnormally large intercellular gaps and facilitating invasion by the rice blast fungus. OsPG2-FOX plants had weaker mechanical properties and greater sensitivity to biotic stresses than wild-type (WT) plants. However, the expression levels of disease resistance genes in non-infected leaves of OsPG2-FOX were more than twice as high as those of the WT and the intensity of disease symptoms was reduced, compared with the WT. Under normal light conditions, overexpression of OsPG2 decreased the pectin content, but did not affect cell adhesion and sensitivity to biotic stresses. Therefore, PG plays a role in regulating intercellular adhesion and the response to biotic stresses in rice.


Assuntos
Ascomicetos/patogenicidade , Parede Celular/química , Oryza/citologia , Oryza/microbiologia , Pectinas/química , Fenômenos Biomecânicos , Parede Celular/genética , Parede Celular/microbiologia , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Oryza/genética , Pectinas/metabolismo , Doenças das Plantas/microbiologia , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas , Poligalacturonase/genética , Poligalacturonase/metabolismo , Regiões Promotoras Genéticas , Zea mays/genética
11.
J Biol Chem ; 296: 100305, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33465378

RESUMO

The type II secretion system (T2SS) transports fully folded proteins of various functions and structures through the outer membrane of Gram-negative bacteria. The molecular mechanisms of substrate recruitment by T2SS remain elusive but a prevailing view is that the secretion determinants could be of a structural nature. The phytopathogenic γ-proteobacteria, Pectobacterium carotovorum and Dickeya dadantii, secrete similar sets of homologous plant cell wall degrading enzymes, mainly pectinases, by similar T2SSs, called Out. However, the orthologous pectate lyases Pel3 and PelI from these bacteria, which share 67% of sequence identity, are not secreted by the counterpart T2SS of each bacterium, indicating a fine-tuned control of protein recruitment. To identify the related secretion determinants, we first performed a structural characterization and comparison of Pel3 with PelI using X-ray crystallography. Then, to assess the biological relevance of the observed structural variations, we conducted a loop-substitution analysis of Pel3 combined with secretion assays. We showed that there is not one element with a definite secondary structure but several distant and structurally flexible loop regions that are essential for the secretion of Pel3 and that these loop regions act together as a composite secretion signal. Interestingly, depending on the crystal contacts, one of these key secretion determinants undergoes disorder-to-order transitions that could reflect its transient structuration upon the contact with the appropriate T2SS components. We hypothesize that such T2SS-induced structuration of some intrinsically disordered zones of secretion substrates could be part of the recruitment mechanism used by T2SS.


Assuntos
Proteínas de Bactérias/química , Dickeya/enzimologia , Pectobacterium carotovorum/enzimologia , Polissacarídeo-Liases/química , Sistemas de Secreção Tipo II/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Parede Celular/química , Parede Celular/microbiologia , Clonagem Molecular , Cristalografia por Raios X , Dickeya/classificação , Dickeya/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares , Pectobacterium carotovorum/classificação , Pectobacterium carotovorum/genética , Filogenia , Células Vegetais/química , Células Vegetais/microbiologia , Plantas/química , Plantas/microbiologia , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Sistemas de Secreção Tipo II/genética , Sistemas de Secreção Tipo II/metabolismo
12.
PLoS Pathog ; 17(1): e1009080, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33411855

RESUMO

The fungal cell wall plays an essential role in maintaining cell morphology, transmitting external signals, controlling cell growth, and even virulence. Relaxation and irreversible stretching of the cell wall are the prerequisites of cell division and development, but they also inevitably cause cell wall stress. Both Mitotic Exit Network (MEN) and Cell Wall Integrity (CWI) are signaling pathways that govern cell division and cell stress response, respectively, how these pathways cross talk to govern and coordinate cellular growth, development, and pathogenicity remains not fully understood. We have identified MoSep1, MoDbf2, and MoMob1 as the conserved components of MEN from the rice blast fungus Magnaporthe oryzae. We have found that blocking cell division results in abnormal CWI signaling. In addition, we discovered that MoSep1 targets MoMkk1, a conserved key MAP kinase of the CWI pathway, through protein phosphorylation that promotes CWI signaling. Moreover, we provided evidence demonstrating that MoSep1-dependent MoMkk1 phosphorylation is essential for balancing cell division with CWI that maintains the dynamic stability required for virulence of the blast fungus.


Assuntos
Parede Celular/fisiologia , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Magnaporthe/patogenicidade , Mitose , Oryza/microbiologia , Doenças das Plantas/microbiologia , Parede Celular/microbiologia , Proteínas Fúngicas/genética , Fosforilação , Transdução de Sinais
13.
Int J Mol Sci ; 22(2)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445801

RESUMO

This study focused on the interactions of pea (Pisum sativum L.) plants with phytopathogenic and beneficial fungi. Here, we examined whether the lysin-motif (LysM) receptor-like kinase PsLYK9 is directly involved in the perception of long- and short-chain chitooligosaccharides (COs) released after hydrolysis of the cell walls of phytopathogenic fungi and identified in arbuscular mycorrhizal (AM) fungal exudates. The identification and analysis of pea mutants impaired in the lyk9 gene confirmed the involvement of PsLYK9 in symbiosis development with AM fungi. Additionally, PsLYK9 regulated the immune response and resistance to phytopathogenic fungi, suggesting its bifunctional role. The existence of co-receptors may provide explanations for the potential dual role of PsLYK9 in the regulation of interactions with pathogenic and AM fungi. Co-immunoprecipitation assay revealed that PsLYK9 and two proposed co-receptors, PsLYR4 and PsLYR3, can form complexes. Analysis of binding capacity showed that PsLYK9 and PsLYR4, synthesized as extracellular domains in insect cells, were able to bind the deacetylated (DA) oligomers CO5-DA-CO8-DA. Our results suggest that the receptor complex consisting of PsLYK9 and PsLYR4 can trigger a signal pathway that stimulates the immune response in peas. However, PsLYR3 seems not to be involved in the perception of CO4-5, as a possible co-receptor of PsLYK9.


Assuntos
Quitina/análogos & derivados , Proteínas de Plantas/metabolismo , Animais , Linhagem Celular , Parede Celular/metabolismo , Parede Celular/microbiologia , Quitina/metabolismo , Quitosana , Hidrólise , Insetos/metabolismo , Micorrizas/metabolismo , Oligossacarídeos , Imunidade Vegetal/fisiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Células Sf9 , Transdução de Sinais/fisiologia , Simbiose/fisiologia
14.
Plant Cell Environ ; 44(1): 304-322, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32890441

RESUMO

In Normandy, flax is a plant of important economic interest because of its fibres. Fusarium oxysporum, a telluric fungus, is responsible for the major losses in crop yield and fibre quality. Several methods are currently used to limit the use of phytochemicals on crops. One of them is the use of plant growth promoting rhizobacteria (PGPR) occurring naturally in the rhizosphere. PGPR are known to act as local antagonists to soil-borne pathogens and to enhance plant resistance by eliciting the induced systemic resistance (ISR). In this study, we first investigated the cell wall modifications occurring in roots and stems after inoculation with the fungus in two flax varieties. First, we showed that both varieties displayed different cell wall organization and that rapid modifications occurred in roots and stems after inoculation. Then, we demonstrated the efficiency of a Bacillus subtilis strain to limit Fusarium wilt on both varieties with a better efficiency for one of them. Finally, thermo-gravimetry was used to highlight that B. subtilis induced modifications of the stem properties, supporting a reinforcement of the cell walls. Our findings suggest that the efficiency and the mode of action of the PGPR B. subtilis is likely to be flax variety dependent.


Assuntos
Bacillus , Parede Celular/microbiologia , Linho/microbiologia , Fusarium , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Caules de Planta/microbiologia , Bacillus/metabolismo , Cromatografia Gasosa , Linho/crescimento & desenvolvimento , Linho/imunologia , Imunofluorescência , Doenças das Plantas/prevenção & controle , Raízes de Plantas/crescimento & desenvolvimento , Caules de Planta/crescimento & desenvolvimento , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Plant Cell Rep ; 40(1): 237-254, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33141312

RESUMO

KEY MESSAGE: Metabolic pathway gene editing in tetraploid potato enhanced resistance to late blight. Multiallelic mutation correction of a caffeoyl-CoA O-methyltransferase gene increased accumulation of resistance metabolites in Russet Burbank potato. Late blight of potato is a devastating disease worldwide and requires weekly applications of fungicides to manage. Genetic improvement is the best option, but the self-incompatibility and inter-specific incompatibility makes potato breeding very challenging. Immune receptor gene stacking has increased resistance, but its durability is limited. Quantitative resistance is durable, and it mainly involves secondary cell wall thickening due to several metabolites and their conjugates. Deleterious mutations in biosynthetic genes can hinder resistance metabolite biosynthesis. Here a probable resistance role of the StCCoAOMT gene was first confirmed by an in-planta transient overexpression of the functional StCCoAOMT allele in late blight susceptible Russet Burbank (RB) genotype. Following this, a precise single nucleotide polymorphism (SNP) mutation correction of the StCCoAOMT gene in RB potato was carried out using CRISPR-Cas9 mediated homology directed repair (HDR). The StCCoAOMT gene editing increased the transcript abundance of downstream biosynthetic resistance genes. Following pathogen inoculation, several phenylpropanoid pathway genes were highly expressed in the edited RB plants, as compared to the non-edited. The disease severity (fold change = 3.76) and pathogen biomass in inoculated stems of gene-edited RB significantly reduced (FC = 21.14), relative to non-edited control. The metabolic profiling revealed a significant increase in the accumulation of resistance-related metabolites in StCCoAOMT edited RB plants. Most of these metabolites are involved in suberization and lignification. The StCCoAOMT gene, if mutated, can be edited in other potato cultivars to enhance resistance to late blight, provided it is associated with other functional genes in the metabolic pathway network.


Assuntos
Parede Celular/microbiologia , Metiltransferases/genética , Proteínas de Plantas/genética , Solanum tuberosum/genética , Solanum tuberosum/microbiologia , Resistência à Doença/genética , Edição de Genes , Regulação da Expressão Gênica de Plantas , Genótipo , Metiltransferases/química , Metiltransferases/metabolismo , Mutação , Filogenia , Phytophthora infestans/patogenicidade , Células Vegetais/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas , Polimorfismo de Nucleotídeo Único , Solanum tuberosum/citologia
16.
Mol Biol Rep ; 47(11): 9179-9188, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33068230

RESUMO

The Phytophthora genus is composed, mainly, of plant pathogens. This genus belongs to the Oomycete class, also known as "pseudo-fungi", within the Chromista Kingdom. Phytophthora spp. is highlighted due to the significant plant diseases that they cause, which represents some of the most economically and cultural losses, such as European chestnut ink disease, which is caused by P. cinnamomi. Currently, there have been four genome assemblies placed at the National Center for Biotechnology Information (NCBI), although the progress to understand and elucidate the pathogenic process of P. cinnamomi by its genome is progressing slowly. In this review paper, we aim to report and discuss the recent findings related to P. cinnamomi and its genomic information. Our research is based on paper databases that reported probable functions to P. cinnamomi proteins using sequence alignments, bioinformatics, and biotechnology approaches. Some of these proteins studied have functions that are proposed to be involved in the asexual sporulation and zoosporogenesis leading to the host colonization and consequently associated with pathogenicity. Some remarkable genes and proteins discussed here are related to oospore development, inhibition of sporangium formation and cleavage, inhibition of flagellar assembly, blockage of cyst germination and hyphal extension, and biofilm proteins. Lastly, we report some biotechnological approaches using biological control, studies with genome sequencing of P. cinnamomi resistant plants, and gene silencing through RNA interference (iRNA).


Assuntos
Biotecnologia/métodos , Biologia Computacional/métodos , Genômica/métodos , Oomicetos/genética , Phytophthora/genética , Parede Celular/microbiologia , Interações Hospedeiro-Patógeno , Oomicetos/fisiologia , Phytophthora/classificação , Phytophthora/fisiologia , Doenças das Plantas/microbiologia , Esporos/genética
17.
Int J Mol Sci ; 21(18)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32937921

RESUMO

The antimicrobial peptide LL-37 inhibits the growth of the major human pathogen Mycobacterium tuberculosis (Mtb), but the mechanism of the peptide-pathogen interaction inside human macrophages remains unclear. Super-resolution imaging techniques provide a novel opportunity to visualize these interactions on a molecular level. Here, we adapt the super-resolution technique of stimulated emission depletion (STED) microscopy to study the uptake, intracellular localization and interaction of LL-37 with macrophages and virulent Mtb. We demonstrate that LL-37 is internalized by both uninfected and Mtb infected primary human macrophages. The peptide localizes in the membrane of early endosomes and lysosomes, the compartment in which mycobacteria reside. Functionally, LL-37 disrupts the cell wall of intra- and extracellular Mtb, resulting in the killing of the pathogen. In conclusion, we introduce STED microscopy as an innovative and informative tool for studying host-pathogen-peptide interactions, clearly extending the possibilities of conventional confocal microscopy.


Assuntos
Catelicidinas/metabolismo , Catelicidinas/farmacologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Peptídeos Catiônicos Antimicrobianos , Parede Celular/microbiologia , Células Cultivadas , Endossomos/microbiologia , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/microbiologia , Lisossomos/microbiologia , Macrófagos/microbiologia , Microscopia
18.
Fungal Genet Biol ; 144: 103443, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32800918

RESUMO

Fusarium graminearum is the main pathogenic fungus causing Fusarium head blight (FHB), which is a wheat disease with a worldwide prevalence. In eukaryotes, phosphatidylinositol 4-phosphate (PI4P), which participates in many physiological processes, is located primarily in different organelles, including the trans-Golgi network (TGN), plasma membrane and endosomes. Type II phosphatidylinositol 4-kinases (PI4Ks) are involved in regulating the production of PI4P in yeast, plants and mammalian cells. However, the role of these proteins in phytopathogenic fungi is not well understood. In this study, we characterized the type II PI4K protein FgLsb6 in F. graminearum, a homolog of Lsb6 in Saccharomyces cerevisiae. Unlike Lsb6, FgLsb6 localizes to the vacuoles and endosomes. The ΔFglsb6 mutant displayed defects in vegetative growth, deoxynivalenol (DON) production and pathogenicity. Furthermore, the ΔFglsb6 deletion mutant also exhibited increased resistance to osmotic, oxidative and cell wall stresses. Further analyses of the ΔFglsb6 mutant showed that it was defective in the generation of PI4P on endosomes and endocytosis. Collectively, our data suggest that the decreased vegetative growth and pathogenicity of ΔFglsb6 was due to the conservative roles of FgLsb6 in the generation of PI4P on endosomes and endocytosis.


Assuntos
1-Fosfatidilinositol 4-Quinase/genética , Fusarium/genética , Doenças das Plantas/genética , Virulência/genética , Parede Celular/microbiologia , Fusarium/crescimento & desenvolvimento , Regulação Fúngica da Expressão Gênica/genética , Fosfatidilinositóis/metabolismo , Doenças das Plantas/microbiologia , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Triticum/microbiologia , Vacúolos/genética
19.
Sci Rep ; 10(1): 13347, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32770047

RESUMO

Sclerotinia head rot (SHR), caused by the necrotrophic fungus Sclerotinia sclerotiorum, is one of the most devastating sunflower crop diseases. Despite its worldwide occurrence, the genetic determinants of plant resistance are still largely unknown. Here, we investigated the Sclerotinia-sunflower pathosystem by analysing temporal changes in gene expression in one susceptible and two tolerant inbred lines (IL) inoculated with the pathogen under field conditions. Differential expression analysis showed little overlapping among ILs, suggesting genotype-specific control of cell defense responses possibly related to differences in disease resistance strategies. Functional enrichment assessments yielded a similar pattern. However, all three ILs altered the expression of genes involved in the cellular redox state and cell wall remodeling, in agreement with current knowledge about the initiation of plant immune responses. Remarkably, the over-representation of long non-coding RNAs (lncRNA) was another common feature among ILs. Our findings highlight the diversity of transcriptional responses to SHR within sunflower breeding lines and provide evidence of lncRNAs playing a significant role at early stages of defense.


Assuntos
Ascomicetos/genética , Helianthus/microbiologia , Doenças das Plantas/microbiologia , Cruzamento/métodos , Parede Celular/microbiologia , Resistência à Doença , Expressão Gênica/genética , Genótipo , Oxirredução , RNA Longo não Codificante/genética , Análise de Sequência de RNA/métodos , Transcrição Gênica/genética
20.
Sci Rep ; 10(1): 11510, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32661259

RESUMO

Alterations to the gut microbiota can cause an amplification of the inflammatory response to intestinal pathogens. We assessed the effect of Bacteroides thetaiotaomicron and Lactobacillus johnsonii on the elimination of Candida species and whether restoration of these two anaerobic bacteria could attenuate the development of colitis in mice. In this study, L. johnsonii and B. thetaiotaomicron interacted directly with Candida species and induced a degradation of the fungal cell wall, mediated via chitinase-like and mannosidase-like activities, which promoted the inhibition of Candida species growth. In the DSS-induced colitis model, oral administration of L. johnsonii and B. thetaiotaomicron to mice reduced the overgrowth of Escherichia coli, Enterococcus faecalis and Candida glabrata populations and resulted in a significant reduction in inflammatory parameters. L. johnsonii and B. thetaiotaomicron decreased pro-inflammatory mediators and enhanced the anti-inflammatory cytokine response with high TLR9 expression and chitinase-like protein-1 activation, which promoted the elimination of C. glabrata from the gut. Overall, these findings provide evidence that L. johnsonii and B. thetaiotaomicron decrease the development of colitis mediated by TLR9 and promote the elimination of C. glabrata from the gut via chitinase-like and mannosidase-like activities.


Assuntos
Bacteroides thetaiotaomicron/metabolismo , Microbioma Gastrointestinal/genética , Inflamação/prevenção & controle , Lactobacillus johnsonii/metabolismo , Animais , Bacteroides thetaiotaomicron/enzimologia , Candida glabrata/metabolismo , Candida glabrata/patogenicidade , Parede Celular/metabolismo , Parede Celular/microbiologia , Hidrólise , Inflamação/microbiologia , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Lactobacillus johnsonii/enzimologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...